metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kazuya Fujimoto, Kiyonori Nagata, Honoh Suzuki* and Kan Kanamori

Department of Chemistry, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan

Correspondence e-mail: honoh@sci.toyama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.033 wR factor = 0.094 Data-to-parameter ratio = 27.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Bis(1,4-butanediamine)bis(isothiocyanato)cobalt(III) thiocyanate

Received 12 September 2001

Accepted 17 September 2001

Online 29 September 2001

The title compound, $[Co(NCS)_2(C_4H_{12}N_2)_2]NCS$, (I), has an octahedral coordination geometry, in which one of the sevenmembered chelate rings adopts the chair form and the other the twist-boat form.

Comment

Metal complexes of 1,4-butanediamine, also known as putrescin or tetramethylenediamine (tmd), are of interest in the context of bioinorganic chemistry (Gasowska *et al.*, 2000). Only a few structures have been reported for transition metal complexes of tmd (Sato *et al.*, 1974; Shimoi *et al.*, 1988; Kurachi & Ohba, 1992).

The two geometrical isomers of $[Co^{III}(NCS)_2(tmd)_2]^+$ have been prepared and their geometrical configurations have been determined from their spectroscopic properties (Nagata & Kanamori, 2001). The present X-ray analysis confirms the *trans* configuration for one of the isomers, (I) (Fig. 1). In (I), the two seven-membered chelate rings adopt different conformations (Fig. 2). The conformation of Fig. 2(*a*) corresponds to the chair form that has been found in *trans*- $[Co(III)(NO_2)_2(tmd)_2]^+$ (Shimoi *et al.*, 1988). The other chelate ring (Fig. 2*b*) adopts approximately the twist-boat form. The coordination bond distances and angles are in the normal ranges.

Experimental

The title compound, (I), was prepared by adapting the procedures described by Nagata *et al.* (1985) and Nagata & Kanamori (2001). Crystals of (I) were obtained by evaporation of an aqueous solution at room temperature.

Crystal data

$[Co(NCS)_2(C_4H_{12}N_2)_2]NCS$	$D_x = 1.477 \text{ Mg m}^{-3}$
$M_r = 409.48$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 9.739(2) Å	reflections
b = 13.647 (4) Å	$\theta = 14.8 - 15.0^{\circ}$
c = 14.5479(19) Å	$\mu = 1.28 \text{ mm}^{-1}$
$\beta = 107.790 \ (13)^{\circ}$	T = 296 (2) K
V = 1841.2 (7) Å ³	Prism, brown
Z = 4	$0.20 \times 0.20 \times 0.15$ mm

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels.

Figure 2

The conformations of the chelate rings projected along the bisector of the N-Co-N angle.

Data collection

Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.027$
ω –2 θ scans	$\theta_{\rm max} = 30.0^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 13$
(North et al., 1968)	$k = 0 \rightarrow 19$
$T_{\min} = 0.784, \ T_{\max} = 0.831$	$l = -20 \rightarrow 19$
5653 measured reflections	3 standard reflections
5371 independent reflections	frequency: 60 min
4027 reflections with $I > 2\sigma(I)$	intensity decay: 1.8%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.8638P]
$wR(F^2) = 0.094$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5371 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

ł

Selected geometric parameters (Å, °).

Co-N1	1.9881 (17)	Co-N4	1.9930 (17)
Co-N2	1.9747 (17)	Co-N5	1.8918 (17)
Co-N3	1.9856 (17)	Co-N6	1.8961 (17)
N1-Co-N2	92.21 (7)	N2-Co-N6	89.10 (7)
N1-Co-N3	177.26 (7)	N3-Co-N4	90.44 (7)
N1-Co-N4	88.51 (7)	N3-Co-N5	92.13 (8)
N1-Co-N5	85.41 (8)	N3-Co-N6	87.45 (8)
N1-Co-N6	95.05 (7)	N4-Co-N5	93.29 (8)
N2-Co-N3	88.94 (7)	N4-Co-N6	88.60 (7)
N2-Co-N4	177.64 (7)	N5-Co-N6	178.07 (8)
N2-Co-N5	89.01 (8)		

H atoms bonded to C and N atoms were placed geometrically and refined using a riding model via the SHELXL97 HFIX/AFIX 23 facility. The displacement parameter was set as 1.2 times that of the parent atom.

Data collection: AFC-7R Diffractometer Control Software (Rigaku, 1999); cell refinement: AFC-7R Diffractometer Control Software; data reduction: AFC-7R Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the Center for Instrumental Analysis at Toyama University for their support with the X-ray diffraction measurements.

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gasowska, A., Lomozik, L. & Jastrzab, R. (2000). J. Inorg. Biochem. 78, 139-147.
- Kurachi, S. & Ohba, S. (1992). Bull. Chem. Soc. Jpn, 65, 3033-3041.
- Nagata, K. & Kanamori, K. (2001). J. Coord. Chem. In the press.
- Nagata, K., Kanamori, K., Kawai, K. & Ogino, H. (1985). Chem. Lett. pp. 1507-1510.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Rigaku (1999). AFC-7R Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Sato, S., Saito, Y., Fujita, J. & Ogino, H. (1974). Inorg. Nucl. Chem. Lett. 10, 669.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Shimoi, M., Fujinawa, Y., Ogino, H. Kanamori, K. & Kawai, K. (1988). Bull. Chem. Soc. Jpn, 61, 3491-3496.